Pages

Saturday, October 17, 2009

Biotechnology—a sustainable alternative for chemical industry

Introduction
Among the major new technologies that have appeared since the 1970s, biotechnology
has perhaps attracted the most attention. Biotechnology has proved capable of generating
enormous wealth and influencing every significant sector of the economy. Biotechnology
has already substantially affected healthcare; production and processing of food;
agriculture and forestry; environmental protection; and production of materials and
chemicals. This review focuses on achievements and future prospects for biotechnology in
sustainable production of goods and services, specially those that are derived at present
mostly from the traditional chemical industry.


Defining industrial sustainability

"Industrial sustainability" aims to achieve sustainable production and processing
within the context of ecological and social sustainability. Sustainability and sustainable
development have had different meanings in different epochs and not everyone is
agreed on a common definition of these concepts. For the purpose of this review,
sustainable development is understood to mean b. . . a process of change in which the
exploitation of resources, the direction of investments, the orientation of technological
development, and institutional change are all in harmony and enhance both current and
future potential to meet human needs and aspirations. . . (It is) meeting the needs of
the present without compromising the ability of future generations to meet their own
needsQ, as defined by World Commission on Environment and Development (Brundtland,
1987). Sustainable development requires a framework for integrating environmental
policies and development strategies in a global context (Hall and Roome, 1996).
Increasingly, sustainability considerations will shape future technological, socio-econom-
ic, political and cultural change to define the boundaries of what is acceptable


Role of biotechnology in sustainability

Biotechnology refers to an array of enabling technologies that are applicable to broadly
diverse industry sectors (Paugh and Lafrance, 1997; Liese et al., 2000). Biotechnology

comprises three distinct fields of activity, namely genetic engineering, protein engineering
and metabolic engineering. A fourth discipline, known variously as biochemical,
bioprocess and biotechnology engineering, is required for commercial production of
biotechnology products and delivery of its services. Of the many diverse techniques that
biotechnology embraces, none apply across all industrial sectors (Roberts et al., 1999;
Liese et al., 2000). Recognizing its strategic value, many countries are now formulating
and implementing integrated plans for using biotechnology for industrial regeneration, job
creation and social progress (Rigaux, 1997).
Biotechnology is versatile and has been assessed a key technology for a sustainable
chemical industry (Lievonen, 1999). Industries that previously never considered biological
sciences as impacting their business are exploring ways of using biotechnology to their
benefit. Biotechnology provides entirely novel opportunities for sustainable production of
existing and new products and services. Environmental concerns help drive the use of
biotechnology in industry, to not only remove pollutants from the environment but prevent
pollution in the first place. Biocatalyst-based processes have major roles to play in this
context. Biocatalysis operates at lower temperatures, produces less toxic waste, fewer
emissions and by-products compared to conventional chemical processes. New
biocatalysts with improved selectivity and enhanced performance for use in diverse
manufacturing and waste degrading processes (Abramovicz, 1990; Poppe and Novak,
1992; Roberts et al., 1999) are becoming available. In view of their selectivity, these
biocatalysts reduce the need for purifying the product from byproducts, thus reducing
energy demand and environmental impact. Unlike non-biological catalysts, biocatalysts
can be self-replicating.


The applications of biotechnology in the chemical industry

Commodity chemicals

At the basic level, life processes are chemical processes and understanding their
chemistry provides a basis for devising manufacturing operations that approach nature’s
elegance and efficiency. Biotechnology uses the power of life to enable effective, rapid,
safe and environmentally acceptable production of goods and services.

The chemical industry has used traditional biotechnological processes (e.g. microbial
production of enzymes, antibiotics, amino acids, ethanol, vitamins; enzyme catalysis) for
many years (Moo-Young, 1984; Poppe and Novak, 1992; Rehm et al., 1993; Chisti, 1999;
Flickinger and Drew, 1999; Herfried, 2000; Demain, 2000; Spier, 2000; Schmid, 2003). In
addition, traditional biotechnology is widely used in producing fermented foods and
treating waste (Nout, 1992; Moo-Young and Chisti, 1994; Jo¨ rdening and Winter, 2004).
Advances in genetic engineering and other biotechnologies have greatly expanded the
application potential of biotechnology and overcome many of the limitations of
biocatalysts of the preGMO era (Ranganathan, 1976; Liese et al., 2000; Schu¨ gerl and
Bellqardt, 2000). Chemical companies such as Monsanto and DuPont that were once
associated exclusively with traditional petrochemical based production methods have
either moved exclusively to biotechnology-based production, or are deriving significant
proportions of their income through biotechnology (Scheper, 1999; Bommarius, 2004).
Important commodity chemicals such as ethanol and cellulose esters are already sourced
from renewable agricultural feedstocks in the United States. New processes and renewable
resources for other commodity chemicals that are currently derived almost exclusively
from petrochemical feedstocks are in advanced stages of development. Examples of these
chemicals include succinic acid and ethylene glycol.
By the early 1990s biotechnology used for cleaner production was already contributing
about 60% of total biotechnology-related sales value for fine chemicals and between 5%
and 11% for pharmaceuticals (OECD, 1989). Some fine chemicals being manufactured in
multi-tonnage quantities using biotechnology are listed in Table 1 (Bruggink, 1996;
Eriksson, 1997). Nearly all these products have been around for a long time, but many are
now made using engineered biocatalysts.
Two major areas of biotechnology that are driving transformation of the conventional
chemical industry are biocatalysis and metabolic engineering (Poppe and Novak, 1992;
Kim et al., 2000). Genetic engineering and molecular biology techniques have been used
to obtain many modified enzymes with enhanced properties compared to their natural
counterparts. Metabolic engineering, or molecular level manipulation of metabolic
pathways in whole or part, is providing microorganisms and transgenic crops and animals
with new and enhanced capabilities for producing chemicals.
A future bioethanol based chemical industry, for example, will rely on biotechnology in
all of the following ways: (1) generation of high yield transgenic corn varieties having
starch that is readily accessible for enzymatic hydrolysis to glucose; (2) production of
engineered enzymes for greatly improved bioconversion of starch to sugars; (3) genetically
enhanced ethanol tolerant microorganisms that can rapidly ferment sugars to ethanol; (4)
ability to recover ethanol using high-efficiency low-expense bioprocessing.

Specialty and life science products

Biotechnology’s role in production of commodity chemicals is significant, but not as
visible as its role in production of agrochemicals and fine chemicals (Hsu, 2004). Many
renewable bioresources remain to be used effectively because they have been barely
studied. Flora and fauna of many of the world’s ecosystems have been barely investigated
for existence of novel compounds of potential value. For example, microalgae contribute
substantially to primary photosynthetic productivity on Earth, but are barely used


Table 1
Some well-established biotechnology products (by production volume)
Product Annual production (tons)
Bioethanol 26,000,000
l-Glutamic acid (MSG) 1,000,000
Citric acid 1,000,000
l-Lysine 350,000
Lactic acid 250,000
Food-processing enzymes 100,000
Vitamin C 80,000
Gluconic acid 50,000
Antibiotics 35,000
Feed enzymes 20,000
Xanthan 30,000
l-Threonine 10,000
l-Hydroxyphenylalanine 10,000
6-Aminopoenicillanic acid 7000
Nicotinamide 3000
d-p-hydroxyphenylglycine 3000
Vitamin F 1000
7-Aminocephalosporinic acid 1000
Aspartame 600
l-Methionine 200
Dextran 200
Vitamin B12 12
Provitamin D2 5

Introduction to evoulution of biotechnology

In the simplest and broadest sense, Biotechnology is a series of enabling
technologies, which involves the manipulation of living organisms or their subcellular
components to develop useful products, processes or services. Biotechnology
encompasses a wide range of fields, including the life sciences, chemistry,
agriculture, environmental science, medicine, veterinary medicine, engineering, and
computer science.

The manipulation of living organisms is one of the principal tools of modern
biotechnology. Although biotechnology in the broadest sense is not new, what
is new, however, is the level of complexity and precision involved in scientists’
current ability to manipulate living things, making such manipulation predictable,
precise, and controlled. The umbrella of biotechnology encompasses a broad array
of technologies, including recombinant DNA technology, embryo manipulation and
transfer, monoclonal antibody production, and bioprocess engineering, the principle
technology associated with the term is recombinant DNA technology or genetic
engineering. This technique can be used to enhance the ability of an organism to
produce a particular chemical product (penicillin from fungus), to prevent it from
producing a product (polygalacturanase in plant cells) or to enable an organism to
produce an entirely new product (insulin in microbes).
To date the greatest and most notable impact of biotechnology has been in the
medical and pharmaceutical arena. More than 325 million people worldwide have
been helped by the more than 155 biotechnology drugs and vaccines approved
by the U.S. Food and Drug Administration (FDA). Of the biotech medicines on
the market, 70 percent were approved in the last six years. There are more than
370 biotech drug products and vaccines currently in clinical trials targeting more
than 200 diseases, including various cancers, Alzheimer’s disease, heart disease,
diabetes, multiple sclerosis, AIDS and arthritis. The use of biotechnology to produce
molecules of therapeutic value constitutes an important advancement in medical
science. Medications developed through biotechnology techniques have earned the
approval of the U.S. Food and Drug Administration for use in patients who have
cancer, diabetes, cystic fibrosis, hemophilia, multiple sclerosis, hepatitis B, and
Kaposi’s sarcoma. Biotechnology drugs are used to treat invasive fungal infections,
pulmonary embolisms, ischemic strokes, kidney transplant rejection, infertility,
growth hormone deficiency, and other serious disorders. Medications have also been
developed to improve the health of animals. Scientists are currently investigating
applications of advanced gene therapy, a technology that may one day be used to
pinpoint and rectify hereditary disorders.


Many of the products we eat, wear, and use are made using the tools of biotechnology.
Using genetic engineering, scientists are able to enhance agronomic traits
such as biotic and abiotic stress tolerance, growing season and yield, and output
traits such as processing, shelf life and the nutritional content, texture, color, flavor,
and other properties of production crops. Transgenic techniques are applied to
farmed animals to improve the growth, fitness, and other qualities of agriculturally
important mammals, poultry, and fish. Crops and animals can also be used as
production systems for the production of important pharmaceuticals and industrial
products. Enzymes produced using recombinant DNA methods are used to make
cheese, keep bread fresh, produce fruit juices, wines, treat fabric for blue jeans and
other denim clothing. Other recombinant DNA enzymes are used in laundry and
automatic dishwashing detergents.


We can also engineer microorganisms to improve the quality of our environment.
In addition to the opportunities for a variety of new products, including
biodegradable products, bioprocessing using engineered microbes and enzymes
offers new ways to treat and use wastes and to use renewable resources as feedstocks
for materials and fuel. Instead of depending on non-renewable fossil fuels we can
engineer organisms to convert maize and cereal straw, forest products and municipal
waste and other biomass to produce fuel, bioplastics and other useful commodities.
Naturally occurring microorganisms are being used to treat organic and inorganic
contaminants in soil, groundwater, and air. This application of biotechnology has
created an environmental biotechnology industry important in water treatment,
municipal waste management, hazardous waste treatment, bioremediation, and other
areas. DNA fingerprinting, a biotech technique, has dramatically improved criminal
investigation and forensic medicine, as well as afforded significant advances in
anthropology and wildlife management.
This book will aim to cover the history of biotech the tools and applications
across time and disciplines and look to future potential at the confluence of
technologies.



BIOTECHNOLOGY INDUSTRY PATENTS
The US Patent and Trademark Office (PTO) has responded to the growing demand
for patents by the biotechnology industry by increasing the number and sophistication
of biotechnology patent examiners. In FY 1988, the PTO had 67 patent
examiners. By 1998, the number of biotech examiners more than doubled to 184.
Statistics provided by BIO organization
Source: U.S. Patent and Trademark Office, Technology Profile Report, Patent
Examining Technology Center, Groups 1630–1650, Biotechnology 1/1977 – 1/1998,
April 1999